РусскийEnglish (UK)

Aronov DM, Bubnova MG, Perova NV, Orekhov AN, Bobryshev YV.

J Clin Lipidol. 2017 Mar - Apr;11(2):369-376. doi: 10.1016/j.jacl.2017.01.007. Epub 2017 Jan 18.



Decisions about fat consumption and levels of physical activity are among the everyday choices we make in life and risk of coronary heart disease (CHD) can be affected by those choices.


The purpose of this study was to investigate the influence of a standard fat load combined with physical exertion of different intensities on the plasma lipid profile of CHD patients and CHD-free individuals.


This study looked at the influence of different intensities of physical exercise on postprandial lipid metabolism in 20 healthy men and 36 men with diagnosis of CHD. Venous blood samples were obtained after overnight fasting, 3 hours after standard fat load (before the physical load), and immediately after maximal or submaximal physical exercise on bicycle ergometer.


After fat load total cholesterol (TC) concentration did not change in either group. However, after the addition of maximal exercise, TC, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein (Apo) B increased significantly (P < .01) in both groups. After fat load and maximal exercise, there was no change in high-density lipoprotein cholesterol (HDL-C) in healthy men, but in men with CHD, HDL-C fell significantly (P < .01); and Apo AI rose in healthy men (P < .01) but dropped significantly (P < .01) in men with CHD. Submaximal physical exercise (60% of max VO2 load for 40 minutes) after fat load decreased TG level in CHD patients (P < .01) and improved other lipid parameters in both groups significantly (↓LDL-C, ↑HDL-C, ↑Apo AI, ↓Apo B, P < .01). We observed a worsening of physical work capacity in men with CHD (significant reduction of duration and total amount of work performed, maximal VO2, oxygen pulse), during maximal stress test performed 3 hours after fat load. There was a doubling of the number of abnormal stress test results (P < .01). Healthy persons showed an increase in respiratory parameters (ventilation, CO2 production, maximal VO2, and oxygen pulse), but no significant change was found in work capacity. Thus, maximal physical exercise produced atherogenic blood lipid changes (increased TC, increased LDL-C, increased TG, increased Apo B, P < .01) in men with CHD and in healthy men; however, individuals with CHD also demonstrated a significant decrease in HDL-C and Apo AI (P < .01). In contrast, the submaximal physical load improved postprandial lipid changes in both healthy men and men with CHD.


This study demonstrates that moderate exercise is beneficial in improving postprandial lipid abnormalities in both CHD and CHD-free subjects after fatty meal preload. In addition, maximal exercise demonstrated evidence of increase of lipid abnormalities in both CHD and CHD-free individuals under similar conditions of fatty meal preload.


Apolipoproteins AI and B; Combined fat and physical load; Coronary heart disease (CHD); Physical work capacity